On the ideal case of a conjecture of Huneke and Wiegand

Naoki Taniguchi

Waseda University

Joint work with O. Celikbas, S. Goto and R. Takahashi

The 10th Japan-Vietnam jonint seminar on Commutative Algebra

September 13, 2018

$\S 1$ Introduction

For a moment

- R an integral domain
- *M*, *N* finitely generated torsion-free *R*-modules

Recall that M is called torsion-free, if the natural map

 $0 \to M \to M \otimes_R Q(R)$

is injective.

Question

When is the tensor product $M \otimes_R N$ <u>torsion-free</u>?

$\S 1$ Introduction

For a moment

- R an integral domain
- *M*, *N* finitely generated torsion-free *R*-modules

Recall that M is called torsion-free, if the natural map

 $0 \to M \to M \otimes_R Q(R)$

is injective.

Question

When is the tensor product $M \otimes_R N$ torsion-free?

Naoki Taniguchi (Waseda University)

A B F A B F

< □ > < 同 >

э

Let $(-)^* = \operatorname{Hom}_R(-, R)$ be the algebraic dual.

Conjecture 1.1 (Huneke-Wiegand, 1994)

Let (R, \mathfrak{m}) be a Gorenstein local domain with dim R = 1, M a finitely generated torsion-free R-module. If $M \otimes_R M^*$ is torsion-free, then M is free.

Theorem 1.2 (Auslander, 1961)

Let R be a Noetherian normal domain, M a finitely generated R-module. Then M is projective if and only if $M \otimes_R M^*$ is reflexive.

Theorem 1.3 (Huneke-Wiegand, 1994)

Let R be a hypersurface domain, M, N finitely generated R-modules. If $M \otimes_R N$ is torsion-free, then either M or N is free.

Theorem 1.4 (Celikbas, 2011)

Let R be a complete intersection domain, M a finitely generated torsion-free R-module with bounded Betti numbers. If $M \otimes_R M^*$ is torsion-free, then M is free.

- (I) (I

< □ > < @ >

For a commutative Noetherian local ring R, we define

(HWC) For every finitely generated torsion-free R-module M, if $M \otimes_R M^*$ is reflexive, then M is free.

(ARC) For every finitely generated *R*-module *M*, if $\operatorname{Ext}_{P}^{>0}(M, M \oplus R) = (0)$, then M is free.

Theorem 1.5 (Celikbas-Dao, Cekilbas-Takahashi, Huneke-Wiegand) Consider the following conditions.

- (1) (HWC) holds for all Gorenstein local domains.
- (2) (HWC) holds for all one-dimensional Gorenstein local domains.
- (3) (ARC) holds for all Gorenstein local domains.

Then the implications $(1) \iff (2) \implies (3)$ hold.

Conjecture 1.6

Let (R, \mathfrak{m}) be a Gorenstein local domain with dim R = 1, I an ideal of R. If $I \otimes_R I^*$ is torsion-free, then I is principal.

Fact 1.7

Conjecture 1.6 holds for the following cases.

(1) $e(R) \leq 6$ (Goto-Takahashi-T-Truong, 2015)

(2) R = k[[H]], I monomial, $e(R) \le 7$ (Goto-Takahashi-T-Truong, 2015)

(3) $e(R) \le 8$ (Huneke-Iyengar-Wiegand, 2018)

(4) $I \cong trace ideal$ (Lindo, 2017)

The main result of this talk is stated as follows.

Theorem 1.8 (Celikbas-Goto-Takahashi-T, 2018)

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with dim R = 1, I an \mathfrak{m} -primary ideal of R. Suppose that I is weakly \mathfrak{m} -full, that is, $\mathfrak{m}I : \mathfrak{m} = I$. If $I \otimes_R I^*$ is torsion-free, then I is principal, and hence R is a DVR.

Contents

- Introduction (1)
- (2) Weakly \mathfrak{m} -full ideals
- Proof of Theorem 1.8 (3)
- Integrally closed ideals (4)

§2 Weakly m-full ideals

Throughout, let

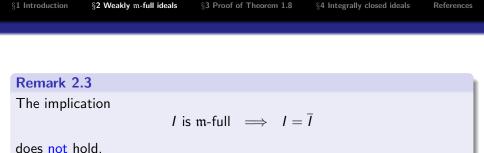
- (R, \mathfrak{m}) be a Noetherian local ring
- I an ideal of R

Definition 2.1

(1) *I* is called m-full, if $\mathfrak{m}I : x = I$ for $\exists x \in \mathfrak{m}$ (Rees)

(2) I is called *weakly* \mathfrak{m} -full, if $\mathfrak{m}I : \mathfrak{m} = I$ (Celikbas-lima-Sadeghi-Takahashi)

Fact 2.2 (Goto, Rees) Suppose $|R/\mathfrak{m}| = \infty$. If $I = \overline{I}$, then $I = \sqrt{(0)}$ or I is \mathfrak{m} -full.



Example 2.4

Let R = k[[X, Y]] be the formal power series ring over a field k. Then

$$I = (X^3, X^2 Y^3, XY^4, Y^5)$$

is \mathfrak{m} -full, but $I \neq \overline{I}$.

Example 2.5

Let J be an ideal of R and set $I = J : \mathfrak{m}$. Then I is a weakly \mathfrak{m} -full ideal.

Remark 2.6

The implication

I is weakly \mathfrak{m} -full \implies I is \mathfrak{m} -full

does not hold.

Proposition 2.7

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring, Q a parameter ideal of R. We set $I = Q : \mathfrak{m}$. If

```
\mu_R(\mathfrak{m}) > \dim R + \mathrm{r}(R),
```

then I is not m-full.

Proof.

Note that R is not regular. Then $\mathfrak{m}I = \mathfrak{m}Q$, so that

 $\mu_R(I) = \dim R + r(R)$

because $\ell_R(I/Q) = r(R)$. If I is m-full, then

$$\mu_R(I) \geq \mu_R(\mathfrak{m})$$

which makes a contradiction.

< 口 > < 同 >

э

13 / 33

Example 2.8

Let k be a field and set $R = k[[t^5, t^6, t^7, t^9]]$. Then

$$I = (t^5, t^9, t^{13}) = (t^5)$$
: m

is weakly m-full, but not m-full.

Theorem 2.9 (Goto-Hayasaka, 2002)

Suppose that I is m-full and depth R/I = 0. If $id_R I < \infty$, then R is a RLR.

Theorem 2.10 (Celikbas-lima-Sadeghi-Takahashi, 2018)

Suppose that I is weakly m-full and depth R/I = 0. If $id_R I < \infty$, then R is a RLR.

§3 Proof of Theorem 1.8

Setting 3.1

- (R, \mathfrak{m}) a Noetherian local ring
- I an \mathfrak{m} -primary ideal of R
- *M* a finitely generated *R*-module

Proposition 3.2 (cf. Corso-Huneke-Katz-Vasconcelos, 2006)

Suppose that I is weakly m-full. If

$$\operatorname{Tor}_t^R(M, R/I) = 0$$
 for $\exists t \ge 0$

then $\operatorname{pd}_R M < t$.

Proof of Proposition 3.2

If t = 0, then M = 0 and $pd_R M = -\infty$. Thus we may assume t > 0. Consider a minimal free resolution of M

$$\cdots \longrightarrow F_{t+1} \longrightarrow F_t \stackrel{\partial_t}{\longrightarrow} F_{t-1} \rightarrow \cdots \rightarrow F_0 \rightarrow 0.$$

Applying $\overline{(-)} = (-) \otimes_R R/I$, we obtain

$$\cdots \longrightarrow \overline{F}_{t+1} \longrightarrow \overline{F}_t \xrightarrow{\overline{\partial}_t} \overline{F}_{t-1} \rightarrow \cdots \rightarrow \overline{F}_0 \rightarrow 0.$$

Suppose $\overline{\partial}_t = 0$. Then $\overline{F}_t = \mathfrak{m}\overline{F}_t$, whence $\overline{F}_t = (0)$ and $F_t = (0)$. Hence $pd_R M < t$.

We now assume $\text{Im} \overline{\partial}_t \neq 0$ and seek a contradiction. Since $(\operatorname{Im} \partial_t) I \subseteq IF_{t-1},$

$$(\operatorname{Im} \partial_t)\mathfrak{m}^s \subseteq IF_{t-1} \text{ for } \exists s > 0.$$

Let us choose the integer s as small as possible.

Proof of Proposition 3.2

Since
$$(\operatorname{Im} \partial_t)\mathfrak{m}^{s-1} \nsubseteq IF_{t-1}$$
, we choose
 $u \in (\operatorname{Im} \partial_t)\mathfrak{m}^{s-1}$ s.t. $u \notin IF_{t-1}$.

Then

$$\mathfrak{m} u \subseteq \mathfrak{m} IF_{t-1}$$

and hence

$$u \in (\mathfrak{m}I : \mathfrak{m})F_{t-1} = IF_{t-1}$$

which is a contradiction. Therefore Im $\overline{\partial}_t = 0$, as desired.

18 / 33

Corollary 3.3

Suppose that I is weakly \mathfrak{m} -full and depth R > 0. Then

 $I \otimes_{R} M$ is torsion-free $\iff M$ is free.

Proof.

$$(\Rightarrow)$$
 Applying $(-) \otimes_R M$ to $0 \to I \to R \to R/I \to 0$, we get

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(R/I, M) \longrightarrow I \otimes_{R} M.$$

Since I contains a NZD on R, $\operatorname{Tor}_{1}^{R}(R/I, M)$ is torsion. Hence

$$\operatorname{Tor}_1^R(R/I,M) = (0)$$

which implies $pd_R M \leq 0$.

19 / 33

We are now ready to prove Theorem 1.8.

Theorem 1.8 (Celikbas-Goto-Takahashi-T, 2018)

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with dim R = 1, I an \mathfrak{m} -primary ideal of R. Suppose that I is weakly \mathfrak{m} -full. If $I \otimes_R I^*$ is torsion-free, then I is principal, and R is a DVR.

Since $I \otimes_R I^*$ is torsion-free, by Corollary 3.3, I^* is free.

Claim 3.4

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with dim R = 1, M a finitely generated torsion-free R-module. Then

 M^* is free \iff M is free

Proof of Claim 3.4.

We may assume M is indecomposable. Since M is torsion-free, if $M^* = (0)$, then M = (0). We may assume $M^* \neq (0)$. Let

$$F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

be the minimal presentation of M. Then

$$0 \longrightarrow M^* \longrightarrow F_0^* \longrightarrow F_1^* \longrightarrow \operatorname{Tr} M \longrightarrow 0.$$

Since $pd_R(TrM) < \infty$, we have $pd_R(TrM) \le 1$. Thus

$$\operatorname{Ext}^2_R(\operatorname{Tr} M, R) = (0)$$

which implies

$$M \longrightarrow M^{**} \longrightarrow 0$$

and hence $M \cong M^{**}$ as claimed.

22 / 33

Consequently, *I* is principal. Therefore, I = (f) for $\exists R$ -NZD $f \in \mathfrak{m}$. Since $I \cong R$, we have $pd_R(R/I) \le 1$, so that

 $\operatorname{Tor}_{2}^{R}(R/\mathfrak{m}, R/I) = (0).$

Hence, by Proposition 3.2, $pd_R(R/\mathfrak{m}) \leq 1$, which yields that R is a DVR.

Remark 3.5

(1) Let (R, \mathfrak{m}) be a Noetherian local ring with depth R > 0, I a weakly \mathfrak{m} -full \mathfrak{m} -primary ideal. If $\mu_R(I) = 1$, then R is a DVR.

(2) Assertion (1) holds for the case where $I = \overline{I}$.

3

23 / 33

イロト イポト イヨト イヨト

§4 Integrally closed ideals

Theorem 4.1

Let R be a Noetherian ring, I an ideal of R with $ht_R I > 0$. Assume R satisfies Serre's condition (S₂). Then TFAE.

(1)
$$I = \overline{I}$$
 and $[I] \in \operatorname{Pic} R$.

(2)
$$R_{\mathfrak{p}}$$
 is a DVR for $\forall \mathfrak{p} \in \operatorname{Ass}_{R} R/I$ and $[I] \in \operatorname{Pic} R$.

(3)
$$I = \overline{I}$$
 and $I \otimes_R I^*$ is reflexive.

When this is the case,

$$I = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R R/I} \mathfrak{p}^{(n(\mathfrak{p}))}$$

where $n(\mathfrak{p}) \geq 1$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R R/I$ and $\mathfrak{p}^{(n(\mathfrak{p}))}$ is a symbolic power of \mathfrak{p} .

Recall that a Noetherian ring R satisfies (S_n) if

$$\operatorname{\mathsf{depth}}\nolimits R_\mathfrak{p} \geq \min\{n,\operatorname{\mathsf{ht}}\nolimits_R\mathfrak{p}\} \ \ \operatorname{\mathsf{for}} \ \ \forall \mathfrak{p} \in \operatorname{\mathsf{Spec}}\nolimits R.$$

We set

Pic $R = \{$ finitely generated projective module M s.t. $M_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ for $\forall \mathfrak{p} \in \text{Spec } R \} / \cong$ and call it *the Picard group* of R.

Lemma 4.2

Let R be a Noetherian ring satisfying (S_1) , I an ideal of R. Assume

 $IR_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ for $\exists \mathfrak{p} \in \operatorname{Ass}_{R} R/I$.

Then R_p is a Cohen-Macaulay local ring with dim $R_p = 1$. If, furthermore, $I = \overline{I}$, then R_p is a DVR.

Proof.

Note that depth $_{R_p}(R_p/IR_p) = 0$. Since IR_p is principal, we have depth $R_p = 1$. As R satisfies (S_1) , we conclude that R_p is a Cohen-Macaulay local ring with dim $R_p = 1$. If $I = \overline{I}$, then Remark 3.5 (2) shows R_p is a DVR.

Theorem 4.1

Let R be a Noetherian ring, satisfying (S_2) , I an ideal of R with $ht_R I > 0$. Then TFAE.

(1)
$$I = \overline{I}$$
 and $[I] \in \operatorname{Pic} R$.

(2) $R_{\mathfrak{p}}$ is a DVR for $\forall \mathfrak{p} \in \operatorname{Ass}_{R} R/I$ and $[I] \in \operatorname{Pic} R$.

(3) $I = \overline{I}$ and $I \otimes_R I^*$ is reflexive.

When this is the case,

$$I = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R R/I} \mathfrak{p}^{(n(\mathfrak{p}))}$$

where $n(\mathfrak{p}) \geq 1$ for $\forall \mathfrak{p} \in \operatorname{Ass}_R R/I$.

(1) \Rightarrow (2): It follows from Lemma 4.2.

(2) \Rightarrow (3): Suppose that $\overline{I}/I \neq$ (0) and choose $\mathfrak{p} \in \operatorname{Ass}_R \overline{I}/I$. Then $\mathfrak{p} \in \operatorname{Ass}_R R/I$ so that $R_\mathfrak{p}$ is a DVR by assumption. Hence

$$IR_{\mathfrak{p}} = \overline{IR_{\mathfrak{p}}} = \overline{I}R_{\mathfrak{p}}.$$

This is a contradiction, because $(\overline{I}/I)_{\mathfrak{p}} \neq (0)$. Thus $\overline{I} = I$.

Since $[I] \in \text{Pic } R$, I is projective.

Note that

- R-duals and tensor products of projective modules are projective
- projective modules are reflexive

so we conclude that $I \otimes_R I^*$ is reflexive.

(2) \Rightarrow (1): It follows from the fact that (2) implies $I = \overline{I}$.

(3) \Rightarrow (2): Suppose that $I = \overline{I}$ and $I \otimes_R I^*$ is reflexive.

Claim 4.3

Let $\mathfrak{p} \in \operatorname{Spec} R$ with $\operatorname{ht}_R \mathfrak{p} \leq 1$. Then $IR_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ and $\operatorname{Supp}_R I = \operatorname{Spec} R$.

We now proceed to show $[I] \in \text{Pic } R$, by using Theorem 4.4.

Theorem 4.4 (Auslander, Huneke-Wiegand)

Let (R, \mathfrak{m}) be a Noetherian local ring satisfying (S_2) , M a finitely generated torsion-free R-module. Suppose that

 M_P is a free R_P -module for $P \in \text{Spec } R$ with $ht_R P \leq 1$.

If $M \otimes_R M^*$ is reflexive, then M is free.

- For $q \in \operatorname{Spec} R$, let $P \in \operatorname{Spec} R_q$ with $\operatorname{ht}_{R_q} P \leq 1$.
- Then $P = \mathfrak{p}R_{\mathfrak{q}}$ for $\exists \mathfrak{p} \in \operatorname{Spec} R$ with dim $R_{\mathfrak{p}} \leq 1$. It follows that

$$(IR_{\mathfrak{q}})_P \cong IR_{\mathfrak{p}} \cong R_{\mathfrak{p}} \cong (R_{\mathfrak{q}})_P.$$

Moreover $IR_{\mathfrak{q}} \otimes_{R_{\mathfrak{q}}} (IR_{\mathfrak{q}})^*$ is reflexive. Theorem 4.4 implies $IR_{\mathfrak{q}}$ is $R_{\mathfrak{q}}$ -free.

Since $\operatorname{Supp}_R I = \operatorname{Spec} R$, we see that $IR_{\mathfrak{q}} \cong R_{\mathfrak{q}}$.

This shows *I* is projective, i.e., $[I] \in \text{Pic } R$.

References

Let $\mathfrak{p} \in \operatorname{Ass}_R R/I$. Since $[I] \in \operatorname{Pic} R$, we have $IR_\mathfrak{p} \cong R_\mathfrak{p}$. By Lemma 4.2, $R_\mathfrak{p}$ is a Cohen-Macaulay ring with dim $R_\mathfrak{p} = 1$. As $IR_\mathfrak{p}$ is free, we have

 $\operatorname{Tor}_{2}^{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}},R_{\mathfrak{p}}/IR_{\mathfrak{p}})=0.$

By Proposition 3.2, R_p is a DVR. This completes the proof of $(3) \Rightarrow (2)$.

Let us make sure of the last assertion.

Let $\mathfrak{p} \in \operatorname{Ass}_R R/I$. Then, since $R_{\mathfrak{p}}$ is a DVR, we have

$$IR_{\mathfrak{p}} = \mathfrak{p}^{n(\mathfrak{p})}R_{\mathfrak{p}}$$

for $\exists n(\mathfrak{p}) \geq 1$. Thus $IR_{\mathfrak{p}} \cap R = \mathfrak{p}^{(n(\mathfrak{p}))}$, and hence the result follows.

Thank you so much for your attention.

Naoki Taniguchi (Waseda University)

References

- [1] M. Auslander, Modules over unramified regular local rings, Illinois J. Math., 5 (1961), 631-647.
- [2] O. Celikbas, K.-i, lima, A. Sadeghi, and R. Takahashi, On the ideal case of a conjecture of Auslander and Reiten, Bull. Sci. Math., 142 (2018), 94-107.
- [3] O. Celikbas and R. Takahashi, Auslander-Reiten conjecture and Auslander-Reiten duality, J. Algebra, 382 (2013), 100–114.
- [4] O. Celikbas, S. Goto, R. Takahashi, and N. Taniguchi, On the ideal case of a conjecture of Huneke and Wiegand, Proc. Edinb. Math. Soc., (to appear).
- [5] A. Corso, C. Huneke, D. Katz, and W. V. Vasconcelos, Integral closure of ideals and annihilators of homology, Commutative algebra, Lect. Notes Pure Appl. Math., 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, 33-48.
- [6] S. Goto, R. Takahashi, N. Taniguchi, and H. L. Truong, Huneke-Wiegand conjecture and change of rings, J. Algebra, 422 (2015), 33-52.
- [7] C. Huneke and R. Wiegand, Tensor products of modules and the rigidity of Tor, Math. Ann., 299 (1994), no.3, 449-476.

э

イロト イポト イヨト イヨト